

TestML Programmer’s
Guide

Touchstone Technologies, Inc.

1500 Industry Road Suite H

Hatfield, PA 19440

Tel: 267-222-8687

Fax: 267-222-8697

www.touchstone-inc.com

Copyright 2002 - 2011

http://www.touchstone-inc.com/

Table of Contents

Introduction ... 3

Getting started ... 4

A word about scope ... 4

A word about data dictionaries, substitution tags, and variables 4

Structural overview .. 5

Blueprint .. 5

Plan ... 5

Session .. 6

Dialog .. 6

Transaction .. 7

Message .. 7

Send .. 8

WaitEvents .. 8

Receive .. 9

Event ... 9

Introduction

The WinSIP TestML engine is designed to provide the user with a comprehensive set of
features and functions to enable free form scripting of SIP call flows. It supports
structured concepts such as nested transactions without imposing rigid restrictions on
form. Because the TestML engine is implemented alongside the WinSIP internal stack,
the TestML engine can call upon the resources of WinSIP’s built-in functions which can
significantly reduce the minutia of complex transactions such as SDP parsing.

The TestML engine also has extended support for media processing such as setting,
starting, and stopping the media streams at any point during the script. IVR functions
such as sending DTMF and receiving DTMF are also supported making the engine ideal
for “call and response” scenarios. Advanced features such as user data dictionaries,
timers, retransmission control, and more are also included in this release.

The following document describes the concepts, structure, and elements of a TestML
document. In the code examples you will often times see the symbol “…”. This
indicates that in a typical implementation, there would most likely be other code in this
section. This code has been omitted from the example in the interest of space and
readability usually because it is extraneous to the example being discussed.

Getting started

A word about scope

The TestML document supports the programming concept of scope. The definition of
transactions, messages, templates, and other reusable components are scope aware.
Therefore, if you want a transaction, template, message or other component to be
accessible, be sure to define it in a “public” scope relative to where you want to access
it. Likewise, if you want to “privatize” one of these components, narrow the scope to the
most local logical component.

A word about data dictionaries, substitution tags, and variables

The TestML engine has a powerful underlying data dictionary and support mechanisms.
This dictionary mechanism allows you to access internal variables (such as user input
fields) as well as creating your own variables (e.g. anything_received). You can
substitute variables as “smart text” into messages, test on the value of dictionary
elements, set or increment values and so forth.

Structural overview

Blueprint

The TestML document’s defining attribute is the blueprint element. All TestML scripts
must have one and only one blueprint element. Therefore, the most basic TestML
Script would consist of the following code:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE TestML SYSTEM "TestML.dtd">

<blueprint name="My Test" description="My Test SIP (UAS)">

 …

</blueprint>

A Blueprint may also include a plan element which can execute one or more session
elements, implement logic such as repeat statements and conditionals and provide
other control mechanisms. If no plan element is present, the sub-elements such as
sessions or dialogs are executed in the order in which they appear in the script.

Plan

A plan element implements the control logic for a blueprint or session and is contained
within either of these elements. The plan element is the component which is typically
used to control the execution of sessions, dialogs and other test-related components.
The following is an example of a script which executes two different session plans within
one blueprint:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE TestML SYSTEM "TestML.dtd">

<blueprint name="My Test" description="My Test SIP (UAS)">

 …

 <plan>

<execute type="session" id="Basic UAC"/>

<execute type="session" id="Basic UAS"/>

 </plan>

</blueprint>

It is also implemented in a session element in a similar manner to execute dialogs or
transactions:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE TestML SYSTEM "TestML.dtd">

<blueprint name="My Test" description="My Test SIP (UAS)">

 …

 <session name=”My Session>

 …

 <plan>

 <execute type="dialog" id="Basic Outgoing Telephony Call" />

 </plan>

 </session>

<plan>

<execute type="session" id="Basic UAC"/>

 </plan>

</blueprint>

Session

A session element is contained within a blueprint and implements the control logic for a
test. The session element is the component which is typically used to control the
execution of dialogs and other test-specific components. A session element must
include a plan element. A Basic session element would appear as:

…

<session name="Basic UAC">

 …

 <plan>

 <execute type="dialog" id="Basic Outgoing Telephony Call" />

 </plan>

</session>

A session element is typically where a repetitive test would put its control logic for the
iterations as follows:

…

<session name="Basic UAC">

 …

 <plan>

 <repeat iterations="[input.frequency]">

 <execute type="dialog" id="Basic Outgoing Telephony Call" />

</repeat>

 </plan>

</session>

Dialog

A dialog element is contained within a blueprint or session depending upon scope, and
implements the send/receive or receive/send control logic for a call. The dialog element
is loosely modeled after a SIP dialog. Dialogs are a structural, reusable element and
are not necessarily required by a session. A basic dialog element would appear as:

…

<session name="Basic UAC">

 <dialog name=” Basic Outgoing Telephony Call”>

 …

 </dialog>

 …

 <plan>

 <repeat iterations="[input.frequency]">

 <execute type="dialog" id="Basic Outgoing Telephony Call" />

</repeat>

 </plan>

</session>

Transaction

A transaction element is typically contained within a dialog or session depending upon
scope, and implements the send/receive logic for a transaction (e.g. BYE transaction).
The transaction element is loosely modeled after a SIP transaction. Transactions are
structural, reusable elements and are not necessarily required. A basic transaction
element would appear as:

…

<transaction name="Basic UAC">

 <message name="bye">

 …

 </message>

 …

 <send message="bye" ip="1.1.1.1" port="5060" id="bye " retransmit="500" />

 <waitevents>

 …

 </waitevents>

</transaction>

Message

A message element is contained within a blueprint, session, or dialog depending upon
scope, and implements the template for reusable, outgoing messages. A basic
message element would appear as:

…

<message name="bye">

 <![CDATA[

 BYE sip:[remote.id]@[remote.address]:[remote.port] SIP/2.0

 [dialog.routeset]

 Via: SIP/2.0/UDP 1.1.1.1:5060;branch=[new.branch]

 From: [local.name] <sip:[local.id]@[local.address]:[local.port]>;tag=[local.tag]

 To: [remote.name] <sip:[remote.id]@[remote.address]:[remote.port]>;tag=[remote.tag]

 Call-ID: [callid]

 CSeq: [local.cseq] BYE

 Max-Forwards: 70

]]>

</message>

Note the extra line break between the last line and the close of the CDATA XML
section. A message is used in conjunction with a send element.

Send

A send element is contained within a blueprint, session, and implements the
transmission functionality of the TestML engine. There are two ways to implement a
send element. You may send a message element as above, or send raw or dictionary-
based text. A basic send element would appear as:

…

<send ip="[remote.address]" port="[remote.port]" id="bye.request" retransmit="500" />

 <![CDATA[

 BYE sip:[remote.id]@[remote.address]:[remote.port] SIP/2.0

 [dialog.routeset]

 Via: SIP/2.0/UDP 1.1.1.1:5060;branch=[new.branch]

 From: [local.name] <sip:[local.id]@[local.address]:[local.port]>;tag=[local.tag]

 To: [remote.name] <sip:[remote.id]@[remote.address]:[remote.port]>;tag=[remote.tag]

 Call-ID: [callid]

 CSeq: [local.cseq] BYE

 Max-Forwards: 70

]]>

</send>

As mentioned before, you may also send a pre-defined message template by including
the message parameter:

<send message="bye" ip="[remote.address]" port="[remote.port]" id="bye " retransmit="500" />

WaitEvents

The waitevents section must be included in order to process user events, receive
incoming messages, and respond to timer events or retransmission timeouts. The
WaitEvents block is typically located within a dialog or transaction element. Each of the
subcomponents of the waitevents element can either “complete” the waitevents (i.e. exit
the block) or not (i.e. continue to wait for incoming messages or events). The following
is an example of a waitevents block:

…

<waitevents>

 <receive protocol="sip" method="BYE" type="response" code="100..199" complete="false" />

 <receive protocol="sip" method="BYE" type="response" code="200..299" complete="true" />

</waitevents>

Receive

The receive element must be included in a WaitEvents section in order to process
incoming messages.

…

<receive protocol="sip" method="BYE" type="response" code="100..199" complete="false">

 …

</receive>

Event

The event element must be included in a WaitEvents section in order to process user
events such as pressing the stop button, timer events, and retransmission timeouts:

…

<event id="call.duration.timer" complete="true">

 …

</event>

